Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Subdivision of the bacterioferritin comigratory protein family of bacterial peroxiredoxins based on catalytic activity.

Identifieur interne : 000989 ( Main/Exploration ); précédent : 000988; suivant : 000990

Subdivision of the bacterioferritin comigratory protein family of bacterial peroxiredoxins based on catalytic activity.

Auteurs : David J. Clarke [Royaume-Uni] ; Ximena P. Ortega ; C Logan Mackay ; Miguel A. Valvano ; John R W. Govan ; Dominic J. Campopiano ; Pat Langridge-Smith ; Alan R. Brown

Source :

RBID : pubmed:20078128

Descripteurs français

English descriptors

Abstract

Peroxiredoxins are ubiquitous proteins that catalyze the reduction of hydroperoxides, thus conferring resistance to oxidative stress. Using high-resolution mass spectrometry, we recently reclassified one such peroxiredoxin, bacterioferritin comigratory protein (BCP) of Escherichia coli, as an atypical 2-Cys peroxiredoxin that functions through the formation of an intramolecular disulfide bond between the active and resolving cysteine. An engineered E. coli BCP, which lacked the resolving cysteine, retained enzyme activity through a novel catalytic pathway. Unlike the active cysteine, the resolving cysteine of BCP peroxiredoxins is not conserved across all members of the family. To clarify the catalytic mechanism of native BCP enzymes that lack the resolving cysteine, we have investigated the BCP homologue of Burkholderia cenocepacia. We demonstrate that the B. cenocepacia BCP (BcBCP) homologue functions through a 1-Cys catalytic pathway. During catalysis, BcBCP can utilize thioredoxin as a reductant for the sulfenic acid intermediate. However, significantly higher peroxidase activity is observed utilizing glutathione as a resolving cysteine and glutaredoxin as a redox partner. Introduction of a resolving cysteine into BcBCP changes the activity from a 1-Cys pathway to an atypical 2-Cys pathway, analogous to the E. coli enzyme. In contrast to the native B. cenocepacia enzyme, thioredoxin is the preferred redox partner for this atypical 2-Cys variant. BCP-deficient B. cenocepacia exhibit a growth-phase-dependent hypersensitivity to oxidative killing. On the basis of sequence alignments, we believe that BcBCP described herein is representative of the major class of bacterial BCP peroxiredoxins. To our knowledge, this is the first detailed characterization of their catalytic activity. These studies support the subdivision of the BCP family of peroxiredoxins into two classes based on their catalytic activity.

DOI: 10.1021/bi901703m
PubMed: 20078128


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Subdivision of the bacterioferritin comigratory protein family of bacterial peroxiredoxins based on catalytic activity.</title>
<author>
<name sortKey="Clarke, David J" sort="Clarke, David J" uniqKey="Clarke D" first="David J" last="Clarke">David J. Clarke</name>
<affiliation wicri:level="4">
<nlm:affiliation>SIRCAMS, School of Chemistry, University of Edinburgh, Edinburgh, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>SIRCAMS, School of Chemistry, University of Edinburgh, Edinburgh</wicri:regionArea>
<placeName>
<settlement type="city">Édimbourg</settlement>
<region type="country">Écosse</region>
</placeName>
<orgName type="university">Université d'Édimbourg</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ortega, Ximena P" sort="Ortega, Ximena P" uniqKey="Ortega X" first="Ximena P" last="Ortega">Ximena P. Ortega</name>
</author>
<author>
<name sortKey="Mackay, C Logan" sort="Mackay, C Logan" uniqKey="Mackay C" first="C Logan" last="Mackay">C Logan Mackay</name>
</author>
<author>
<name sortKey="Valvano, Miguel A" sort="Valvano, Miguel A" uniqKey="Valvano M" first="Miguel A" last="Valvano">Miguel A. Valvano</name>
</author>
<author>
<name sortKey="Govan, John R W" sort="Govan, John R W" uniqKey="Govan J" first="John R W" last="Govan">John R W. Govan</name>
</author>
<author>
<name sortKey="Campopiano, Dominic J" sort="Campopiano, Dominic J" uniqKey="Campopiano D" first="Dominic J" last="Campopiano">Dominic J. Campopiano</name>
</author>
<author>
<name sortKey="Langridge Smith, Pat" sort="Langridge Smith, Pat" uniqKey="Langridge Smith P" first="Pat" last="Langridge-Smith">Pat Langridge-Smith</name>
</author>
<author>
<name sortKey="Brown, Alan R" sort="Brown, Alan R" uniqKey="Brown A" first="Alan R" last="Brown">Alan R. Brown</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20078128</idno>
<idno type="pmid">20078128</idno>
<idno type="doi">10.1021/bi901703m</idno>
<idno type="wicri:Area/Main/Corpus">000A37</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A37</idno>
<idno type="wicri:Area/Main/Curation">000A37</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A37</idno>
<idno type="wicri:Area/Main/Exploration">000A37</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Subdivision of the bacterioferritin comigratory protein family of bacterial peroxiredoxins based on catalytic activity.</title>
<author>
<name sortKey="Clarke, David J" sort="Clarke, David J" uniqKey="Clarke D" first="David J" last="Clarke">David J. Clarke</name>
<affiliation wicri:level="4">
<nlm:affiliation>SIRCAMS, School of Chemistry, University of Edinburgh, Edinburgh, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>SIRCAMS, School of Chemistry, University of Edinburgh, Edinburgh</wicri:regionArea>
<placeName>
<settlement type="city">Édimbourg</settlement>
<region type="country">Écosse</region>
</placeName>
<orgName type="university">Université d'Édimbourg</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ortega, Ximena P" sort="Ortega, Ximena P" uniqKey="Ortega X" first="Ximena P" last="Ortega">Ximena P. Ortega</name>
</author>
<author>
<name sortKey="Mackay, C Logan" sort="Mackay, C Logan" uniqKey="Mackay C" first="C Logan" last="Mackay">C Logan Mackay</name>
</author>
<author>
<name sortKey="Valvano, Miguel A" sort="Valvano, Miguel A" uniqKey="Valvano M" first="Miguel A" last="Valvano">Miguel A. Valvano</name>
</author>
<author>
<name sortKey="Govan, John R W" sort="Govan, John R W" uniqKey="Govan J" first="John R W" last="Govan">John R W. Govan</name>
</author>
<author>
<name sortKey="Campopiano, Dominic J" sort="Campopiano, Dominic J" uniqKey="Campopiano D" first="Dominic J" last="Campopiano">Dominic J. Campopiano</name>
</author>
<author>
<name sortKey="Langridge Smith, Pat" sort="Langridge Smith, Pat" uniqKey="Langridge Smith P" first="Pat" last="Langridge-Smith">Pat Langridge-Smith</name>
</author>
<author>
<name sortKey="Brown, Alan R" sort="Brown, Alan R" uniqKey="Brown A" first="Alan R" last="Brown">Alan R. Brown</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="eISSN">1520-4995</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Bacterial Proteins (classification)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Burkholderia (chemistry)</term>
<term>Catalysis (MeSH)</term>
<term>Cell Line (MeSH)</term>
<term>Escherichia coli (enzymology)</term>
<term>Escherichia coli Proteins (classification)</term>
<term>Escherichia coli Proteins (genetics)</term>
<term>Escherichia coli Proteins (metabolism)</term>
<term>Mice (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>NADP (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Peroxiredoxins (classification)</term>
<term>Peroxiredoxins (genetics)</term>
<term>Peroxiredoxins (metabolism)</term>
<term>Protein Transport (MeSH)</term>
<term>Sulfhydryl Compounds (chemistry)</term>
<term>Thioredoxin-Disulfide Reductase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Burkholderia (composition chimique)</term>
<term>Catalyse (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Escherichia coli (enzymologie)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>NADP (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxirédoxines (classification)</term>
<term>Peroxirédoxines (génétique)</term>
<term>Peroxirédoxines (métabolisme)</term>
<term>Protéines Escherichia coli (classification)</term>
<term>Protéines Escherichia coli (génétique)</term>
<term>Protéines Escherichia coli (métabolisme)</term>
<term>Protéines bactériennes (classification)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Souris (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Thiols (composition chimique)</term>
<term>Thioredoxin-disulfide reductase (métabolisme)</term>
<term>Transport des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Sulfhydryl Compounds</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Escherichia coli Proteins</term>
<term>Peroxiredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Escherichia coli Proteins</term>
<term>Peroxiredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Escherichia coli Proteins</term>
<term>NADP</term>
<term>Peroxiredoxins</term>
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Burkholderia</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Peroxirédoxines</term>
<term>Protéines Escherichia coli</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Burkholderia</term>
<term>Thiols</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Peroxirédoxines</term>
<term>Protéines Escherichia coli</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>NADP</term>
<term>Peroxirédoxines</term>
<term>Protéines Escherichia coli</term>
<term>Protéines bactériennes</term>
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Catalysis</term>
<term>Cell Line</term>
<term>Mice</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis, Site-Directed</term>
<term>Oxidation-Reduction</term>
<term>Protein Transport</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Catalyse</term>
<term>Données de séquences moléculaires</term>
<term>Lignée cellulaire</term>
<term>Mutagenèse dirigée</term>
<term>Oxydoréduction</term>
<term>Souris</term>
<term>Séquence d'acides aminés</term>
<term>Transport des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Peroxiredoxins are ubiquitous proteins that catalyze the reduction of hydroperoxides, thus conferring resistance to oxidative stress. Using high-resolution mass spectrometry, we recently reclassified one such peroxiredoxin, bacterioferritin comigratory protein (BCP) of Escherichia coli, as an atypical 2-Cys peroxiredoxin that functions through the formation of an intramolecular disulfide bond between the active and resolving cysteine. An engineered E. coli BCP, which lacked the resolving cysteine, retained enzyme activity through a novel catalytic pathway. Unlike the active cysteine, the resolving cysteine of BCP peroxiredoxins is not conserved across all members of the family. To clarify the catalytic mechanism of native BCP enzymes that lack the resolving cysteine, we have investigated the BCP homologue of Burkholderia cenocepacia. We demonstrate that the B. cenocepacia BCP (BcBCP) homologue functions through a 1-Cys catalytic pathway. During catalysis, BcBCP can utilize thioredoxin as a reductant for the sulfenic acid intermediate. However, significantly higher peroxidase activity is observed utilizing glutathione as a resolving cysteine and glutaredoxin as a redox partner. Introduction of a resolving cysteine into BcBCP changes the activity from a 1-Cys pathway to an atypical 2-Cys pathway, analogous to the E. coli enzyme. In contrast to the native B. cenocepacia enzyme, thioredoxin is the preferred redox partner for this atypical 2-Cys variant. BCP-deficient B. cenocepacia exhibit a growth-phase-dependent hypersensitivity to oxidative killing. On the basis of sequence alignments, we believe that BcBCP described herein is representative of the major class of bacterial BCP peroxiredoxins. To our knowledge, this is the first detailed characterization of their catalytic activity. These studies support the subdivision of the BCP family of peroxiredoxins into two classes based on their catalytic activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20078128</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>04</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2010</Year>
<Month>02</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1520-4995</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>49</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2010</Year>
<Month>Feb</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Subdivision of the bacterioferritin comigratory protein family of bacterial peroxiredoxins based on catalytic activity.</ArticleTitle>
<Pagination>
<MedlinePgn>1319-30</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/bi901703m</ELocationID>
<Abstract>
<AbstractText>Peroxiredoxins are ubiquitous proteins that catalyze the reduction of hydroperoxides, thus conferring resistance to oxidative stress. Using high-resolution mass spectrometry, we recently reclassified one such peroxiredoxin, bacterioferritin comigratory protein (BCP) of Escherichia coli, as an atypical 2-Cys peroxiredoxin that functions through the formation of an intramolecular disulfide bond between the active and resolving cysteine. An engineered E. coli BCP, which lacked the resolving cysteine, retained enzyme activity through a novel catalytic pathway. Unlike the active cysteine, the resolving cysteine of BCP peroxiredoxins is not conserved across all members of the family. To clarify the catalytic mechanism of native BCP enzymes that lack the resolving cysteine, we have investigated the BCP homologue of Burkholderia cenocepacia. We demonstrate that the B. cenocepacia BCP (BcBCP) homologue functions through a 1-Cys catalytic pathway. During catalysis, BcBCP can utilize thioredoxin as a reductant for the sulfenic acid intermediate. However, significantly higher peroxidase activity is observed utilizing glutathione as a resolving cysteine and glutaredoxin as a redox partner. Introduction of a resolving cysteine into BcBCP changes the activity from a 1-Cys pathway to an atypical 2-Cys pathway, analogous to the E. coli enzyme. In contrast to the native B. cenocepacia enzyme, thioredoxin is the preferred redox partner for this atypical 2-Cys variant. BCP-deficient B. cenocepacia exhibit a growth-phase-dependent hypersensitivity to oxidative killing. On the basis of sequence alignments, we believe that BcBCP described herein is representative of the major class of bacterial BCP peroxiredoxins. To our knowledge, this is the first detailed characterization of their catalytic activity. These studies support the subdivision of the BCP family of peroxiredoxins into two classes based on their catalytic activity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Clarke</LastName>
<ForeName>David J</ForeName>
<Initials>DJ</Initials>
<AffiliationInfo>
<Affiliation>SIRCAMS, School of Chemistry, University of Edinburgh, Edinburgh, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ortega</LastName>
<ForeName>Ximena P</ForeName>
<Initials>XP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mackay</LastName>
<ForeName>C Logan</ForeName>
<Initials>CL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Valvano</LastName>
<ForeName>Miguel A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Govan</LastName>
<ForeName>John R W</ForeName>
<Initials>JR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Campopiano</LastName>
<ForeName>Dominic J</ForeName>
<Initials>DJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Langridge-Smith</LastName>
<ForeName>Pat</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brown</LastName>
<ForeName>Alan R</ForeName>
<Initials>AR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>136253-16-2</RegistryNumber>
<NameOfSubstance UI="C068491">bacterioferritin comigratory protein, Bacteria</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53-59-8</RegistryNumber>
<NameOfSubstance UI="D009249">NADP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.15</RegistryNumber>
<NameOfSubstance UI="D054464">Peroxiredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D013880">Thioredoxin-Disulfide Reductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019117" MajorTopicYN="N">Burkholderia</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029968" MajorTopicYN="N">Escherichia coli Proteins</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009249" MajorTopicYN="N">NADP</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054464" MajorTopicYN="N">Peroxiredoxins</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013880" MajorTopicYN="N">Thioredoxin-Disulfide Reductase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>1</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>1</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20078128</ArticleId>
<ArticleId IdType="doi">10.1021/bi901703m</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Écosse</li>
</region>
<settlement>
<li>Édimbourg</li>
</settlement>
<orgName>
<li>Université d'Édimbourg</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Brown, Alan R" sort="Brown, Alan R" uniqKey="Brown A" first="Alan R" last="Brown">Alan R. Brown</name>
<name sortKey="Campopiano, Dominic J" sort="Campopiano, Dominic J" uniqKey="Campopiano D" first="Dominic J" last="Campopiano">Dominic J. Campopiano</name>
<name sortKey="Govan, John R W" sort="Govan, John R W" uniqKey="Govan J" first="John R W" last="Govan">John R W. Govan</name>
<name sortKey="Langridge Smith, Pat" sort="Langridge Smith, Pat" uniqKey="Langridge Smith P" first="Pat" last="Langridge-Smith">Pat Langridge-Smith</name>
<name sortKey="Mackay, C Logan" sort="Mackay, C Logan" uniqKey="Mackay C" first="C Logan" last="Mackay">C Logan Mackay</name>
<name sortKey="Ortega, Ximena P" sort="Ortega, Ximena P" uniqKey="Ortega X" first="Ximena P" last="Ortega">Ximena P. Ortega</name>
<name sortKey="Valvano, Miguel A" sort="Valvano, Miguel A" uniqKey="Valvano M" first="Miguel A" last="Valvano">Miguel A. Valvano</name>
</noCountry>
<country name="Royaume-Uni">
<region name="Écosse">
<name sortKey="Clarke, David J" sort="Clarke, David J" uniqKey="Clarke D" first="David J" last="Clarke">David J. Clarke</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000989 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000989 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20078128
   |texte=   Subdivision of the bacterioferritin comigratory protein family of bacterial peroxiredoxins based on catalytic activity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20078128" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020